Wednesday, September 9, 2015

Perfect Squares [LeetCode]

Problem Description
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.
For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
Solutions

I. Dynamic Programming
This problem can be solved by dynamic programming. If we call dp is the array of least numbers of perfect square numbers for each integer from 1 to n, we have the following relation:
dp[n] = 1 + min (dp[n-i*i] for i from 1 to square root of n)
However, (as of 2015-09-09) I saw people complain that the dynamic programming solution got Time Limit Exception (TLE) with Python. Therefore, StefanPochmann, a member of LeetCode, solved the solution by using "Static" dynamic programming. That means the array dp is a static variable of the class Solution.
Dynamic Programming C++ Code
  1. int numSquares(int n) {  
  2.     static vector<int> dp {0};  
  3.     while (dp.size() <= n) {  
  4.         int m = dp.size(), squares = INT_MAX;  
  5.         for (int i=1; i*i<=m; ++i)  
  6.             squares = min(squares, dp[m-i*i] + 1);  
  7.         dp.push_back(squares);  
  8.     }  
  9.     return dp[n];  
  10. }  
Dynamic Programming C++ : Reverse for-loops inside out
  1. int numSquares(int n) {  
  2.     static vector<int> dp {0};  
  3.     int m = dp.size();  
  4.     dp.resize(max(m, n+1), INT_MAX);  
  5.     for (int i=1, i2; (i2 = i*i)<=n; ++i)  
  6.         for (int j=max(m, i2); j<=n; ++j)  
  7.             if (dp[j] > dp[j-i2] + 1)  
  8.                 dp[j] = dp[j-i2] + 1;  
  9.     return dp[n];  
  10. }  
Dynamic Programming Python Code
  1. class Solution(object):  
  2.     _dp = [0]  
  3.     def numSquares(self, n):  
  4.         dp = self._dp  
  5.         while len(dp) <= n:  
  6.             dp += min(dp[-i*i] for i in range(1, int(len(dp)**0.5+1))) + 1,  
  7.         return dp[n]  
Dynamic Programming Ruby Code
  1. $dp = [0]  
  2. def num_squares(n)  
  3.   $dp << (1..$dp.size**0.5).map { |i| $dp[-i*i] }.min + 1 until $dp[n]  
  4.   $dp[n]  
  5. end  

However, in Python, if you test that code with test case 1,000,000, you will get the TLE error.
NOTE: I'm very happy that LeetCode now provides testing against custom input (From 2015-09-09). This feature I've seen in Hackerrank and wanted LeetCode to implemente it for quite a long time ago.

II. Breadth First Search

Picture 1: Graph of numbers 
In this problem, we define a graph where each number from 0 to n is a node. Two numbers p < q is connected if (q-p) is a perfect square.
So we can simply do a Breadth First Search from the node 0.
Below is the Python code that even can pass the custom test case of 1,000,000.
Breadth First Search Python Code
  1. class Solution(object):  
  2.     _dp = [0]  
  3.     def numSquares(self, n):  
  4.         """ 
  5.         :type n: int 
  6.         :rtype: int 
  7.         """  
  8.          
  9.         q1 = [0]  
  10.         q2 = []  
  11.         level = 0  
  12.         visited = [False] * (n+1)  
  13.         while True:  
  14.             level += 1  
  15.             for v in q1:  
  16.                 i = 0  
  17.                 while True:  
  18.                     i += 1  
  19.                     t = v + i * i  
  20.                     if t == n: return level  
  21.                     if t > n: break  
  22.                     if visited[t]: continue  
  23.                     q2.append(t)  
  24.                     visited[t] = True  
  25.             q1 = q2  
  26.             q2 = []  
  27.                   
  28.         return 0  
PS: For now, I do not have very much time to write the code in Java, C++, C#, Javacript or Ruby, so you are extremely welcome to post your solutions as a comment!

1 comment:

  1. Hi, Can you explain more about "That means the array dp is a static variable of the class Solution."

    Why is it so fast? Same solution without static variable of class solution gives 1900 ms whereas static variable gives 70 ms.

    Thanks

    ReplyDelete